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ABSTRACT

The radio-frequency (RF) signal separation challenge in-
volves recovering a signal-of-interest (SOI) from a super-
imposed co-channel interference signal. The SOI is a digi-
tal communication waveform of known modulation, pulse-
shape, timing, etc. The interferer is unknown and must be
learned from data. Submissions featured a blend of signal
processing strategies, leveraging RF-specific domain knowl-
edge and novel neural network architectures with careful
hyperparameter selection/optimization. The resulting solu-
tions establish new benchmarks for data-driven RF modeling
and interference cancellation.

Index Terms— Source separation, interference rejection,
machine learning, wireless communication.

1. INTRODUCTION

Applications using bands of the RF spectrum increasingly
experience substantial co-channel interference, i.e., degrada-
tion from other waveforms that are superimposed [1]. Such
degradation is avoided by the use of interference mitigation
techniques, often explicitly or implicitly via signal separa-
tion. The goal is to extract the signal-of-interest (SOI) with
high fidelity, thereby enhancing downstream task’s perfor-
mance (e.g., demodulation and decoding). While machine
learning techniques have shown promise in source separation
within computer vision and audio domains, the RF setting
presents unique challenges. The signal processing challenges
of interest are: given nonGaussian, nonstationary co-channel
interference, 1) separate a SOI from the interference; and 2)
demodulate the SOI component in such a mixture. Because
of lack of both othogonality between the constituent signals
and prior knowledge of the interference structure, conven-
tional separation via time- and frequency-selective filtering
are ineffective. Hence, addressing these challenges calls for
new learning methods and architectures [2, 3]. These meth-
ods must identify less obvious features not readily discernible
through standard time and/or frequency domain analysis.
Such data-driven RF signal separation and/or interference
mitigation tools can significantly benefit various applications,
even including several beyond the RF realm.
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2. DEMODULATION CHALLENGE
We consider mixture signals, each 40960-samples long, of the
form y = s + b where s is the SOI, a digital communication
signal whose generation process is known, and b is an interfer-
ence signal, which is a time-series segment from our dataset
(detailed in Section 3). We focus on two types of SOI, single-
carrier QPSK and orthogonal frequency division multiplexing
(OFDM)—specifications are provided.1 We denote by m the
bits comprising the message carried by the SOI.

The goal is to develop a data-driven solution to reject
the co-existing interference, and ultimately estimate the SOI
waveform and its bit-sequence message from y. The metrics
are: 1) the mean-square error (MSE) between the estimate ŝ
and the true SOI s; and 2) the bit error rate (BER) between
the estimated bits m̂ and the true bits m. Participants’ final
scores are computed based on these metrics.

3. DATASET
The relevant mixture signals are created from a “global”
dataset comprising examples of four types of interference:

1. EMISignal1: an electromagnetic interference due to
unintentional radiation from a man-made source;

2. CommSignal2: a digital communication signal from a
commercially available wireless device;

3. CommSignal3: a (different) digital communication sig-
nal from a commercially available wireless device; and

4. CommSignal5G1: a 5G-compliant waveform.

4. SUMMARY OF RESULTS
Figure 1 shows the performance of the 5 best submissions
on the evaluation set TESTSET2MIXTURES, benchmarked
against our best learning-based baseline. The plots depict
BER and MSE versus target SINR for the respective SOI-
interference combinations. Table 1 shows their team ranking
based on challenge’s MSE and BER scores.1 The baseline
method was trained on INTERFERENCESET, using a modi-
fied WaveNet architecture [3, 4]. Implementation details are
included with the challenge’s starter code.3

1https://rfchallenge.mit.edu/wp-content/uploads/2023/
11/ICASSP24_RF_Challenge.pdf

3https://github.com/RFChallenge/icassp2024rfchallenge



Fig. 1: BER and MSE as a function of the target SINR for all combinations of SOI and interferences in this challenge.2

Table 1: MSE AND BER RANKINGS

Team MSE Team BER

1. KU-TII -145.91 1. KU-TII -96

2. LHen -132.91 2. OneInAMillion -87

3. OneInAMillion -125.08 3. TUB -81

4. TUB -118.71 4. LHen -75

5. imec-IDLab -102.29 5. imec-IDLab -69

All submissions outperformed basic benchmarks, such as
linear estimation and naive treatments of interference as white
noise (not shown in Fig. 1), and showed results comparable
to our baseline neural network methods (see Default Torch
Wavenet in Fig. 1). Notably, the top-performing teams im-
proved significantly over these baselines in some cases, such
as those involving EMISignal1 and CommSignal2. How-
ever, mixtures with CommSignal3 consistently cha llenged
all entries. The specific reasons for CommSignal3’s difficulty
remain unclear, warranting further investigation. The top 5
teams were selected to provide detailed descriptions of their
solutions, featured in the ICASSP 2024 proceedings [5–9].
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