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ABSTRACT

This paper presents a data-driven approach to solve the chal-
lenge of separating co-channel mixture signals in the radio
spectrum. The main aim is to extract the signal-of-interest
with high fidelity from the mixture signal, allowing improved
performance in demodulation and decoding tasks. We have
developed a U-Net architecture specifically designed for the
separation of interference signals within the time-frequency
domain. This architecture integrates elements of OFDM sig-
nal resource grid configurations, like the cyclic prefix, en-
suring a tailored and effective approach to signal processing.
This approach has demonstrated a significant improvement,
with an average 63% enhancement in MSE performance over
the baseline model on four different interference types.

Index Terms— Source separation, machine learning, in-
terference rejection, Short-Time Fourier Transform (STFT),
wireless communication.

1. INTRODUCTION

In the evolving landscape of communication systems, a crit-
ical challenge emerges from the shared use of the same seg-
ments of the radio frequency spectrum by various communi-
cation technologies. This leads to co-channel interference,
a phenomenon where multiple signals overlap in the same
frequency band, resulting in significant degradation of signal
quality and reliability. This issue is particularly pronounced
in scenarios where spectrum resources are limited [1]. His-
torically, the challenge of source separation in the radio fre-
quency domain has been a topic of considerable research in-
terest. Traditional methods such as linear minimum mean
squared error (LMMSE) often rely on signal processing tech-
niques that require knowledge of the signal characteristics or
the environment. However, these methods face limitations in
adaptability and scalability, especially in dynamic or complex
interference scenarios.

As the demand for spectrum resources continues to grow,
the need for more efficient and intelligent source separation
techniques becomes increasingly important [2]. In recent
years, deep learning has emerged as a powerful tool for ad-
dressing complex signal processing challenges, including the
separation of overlapping signals in the RF spectrum. The

ICASSP 2024 conference hosted a competition on RF separa-
tion, focusing on QPSK and OFDM QPSK, hereafter referred
to as OFDM [3]. This paper delves into the intricacies of a U-
Net1 based architecture, exploring how it leverages the known
configurations of OFDM signal grids and time-frequency rep-
resentations to effectively mitigate co-channel interference.

2. METHODOLOGY

This research introduces a U-Net model tailored for the task
of RF signal separation [4], with a focus on OFDM signals.
The architecture of our model is a U-Net, comprising six en-
coder layers and five decoder layers.

2.1. Model Architecture

In the OFDM signal structure, each symbol is comprised of 80
samples, of which the first 16 are the Cyclic Prefix (CP), and
the remaining 64 correspond to the subcarriers. Out of these
64 subcarriers, 56 carry nonzero symbols [3]. Our model ap-
plies a short-time Fourier transform (STFT) with an FFT size
of 64 and a hop length of 80, ensuring each FFT computa-
tion captures only the 64 subcarrier samples and skips the 16-
sample CP, aligning precisely with each OFDM symbol. Con-
versely, at the output of the model, the inverse STFT (iSTFT)
is applied to reconstruct the time-domain signal. The kernel
size for each layer is consistently set to 3, and group normal-
ization is implemented across all layers with a size of 8 to
enhance the model’s ability to generalize. Our U-Net model,
Fig. 1, employs a configuration of varying encoder strides [1,
2, 2, 2, 2, 2] and encoder filters [192, 256, 384, 512, 512,
512]. Additionally, we utilize residual connection-based con-
volution blocks in our network architecture, which effectively
prevent the vanishing gradient problem while adding depth
and complexity.

2.2. Data Handling and Preprocessing

The dataset utilized follows the guidelines set by the chal-
lenge organizers [3]. To augment the dataset, we apply trans-
formations to both the phase and amplitude of the interference

1https://github.com/MostafaUgent/UNet_time_freq_
CP
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Fig. 1. Schematic of the interference cancellation model, de-
tailing the input tensor’s progression. Starting with an in-
phase and quadrature (I/Q) baseband RF signal, the model
applies STFT and CP removal to obtain the time-frequency
domain representation [W, H]. The signal is then processed
through a sequence of encoders and decoders, culminating in
an iSTFT with CP addition for interference mitigation.

signal. During training, we process the complex-valued input
samples into real values, training them with a batch size of
2. The data is formatted into two separate channels represent-
ing the real and imaginary parts, conforming to a structure of
[batch, channel, length], where batch = 2, channel = 2,
and length = 40960. We employ 5-fold cross-validation to
ensure distinct separation of training and validation sets.

2.3. Model Parameters and Configuration

The model is trained using a truncated mean squared error
loss, aligning with the challenge’s scoring criteria [3]. The
optimization is carried out using the Adam optimizer, with an
initial learning rate of 0.0002 and a cosine annealing sched-
uler. This setup is selected to achieve a balance between rapid
convergence and avoiding local minima. For testing, we uti-
lize separate frames that were not included in the training and
validation datasets. This approach ensures the robustness and
generalizability of the model’s performance.

3. RESULTS

Table 1 demonstrates the performance of the proposed U-
Net model as compared to no mitigation, LMMSE, as well
as U-Net and WaveNet baselines. Utilizing a 2D U-Net ar-
chitecture for OFDM signal processing, our model achieved
average MSE values: -19.31 dB for EMI, -13.32 dB for

Comm2, -4.84 dB for Comm3, and -14.39 dB for Comm5G
scenarios. These figures notably surpass those of challenge
baseline methods, such as Baseline WaveNet and Baseline U-
Net, across all interference types. While our 2D U-Net model
excelled in the OFDM signal-of-interest (SOI), a different
approach was adopted for the QPSK SOI, where a 1D U-Net
model was utilized. This distinction is crucial, as it highlights
the model’s adaptability to different signal characteristics.
The superior performance of the 2D model in OFDM sce-
narios can be attributed to its design. This tailored approach
to handling the unique aspects of OFDM signal structures,
such as dealing efficiently with the CP, likely contributes to
its outstanding performance in these contexts.

Method EMI Com2 Com3 Com5G

No Mitigation 15/0 15/0 15/0 15/0
LMMSE -3.3/0 -2.0/0 -1.9/0 -5.4/0
Base U-Net -9.2/1.6 -5.4/0.8 -1.8/0 -8.4/0
Base WaveNet -12.9/1.6 -6.6/0.8 -2.3/0 -10.8/1.6
Proposed Model -19.3/2.7 -13.3/0.8 -4.8/0 -14.4/1.6

Table 1. Performance comparison in terms of average MSE
(in dB)/BER score for SINRs ranging from -30 to 0 dB across
various interference types. Our proposed method improves
MSE (linear) by 76.93%, 78.67%, 43.77%, 55.84% for EMI,
Comm2, Comm3, and Comm5G, respectively.
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