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ABSTRACT

In this paper, we present our radio frequency signal denoising
approach, RFDEMUCSE for the 2024 IEEE ICASSP RF Sig-
nal Separation Challenge. Our approach is based on the DE-
MUCS architecture [1]], and has a U-Net structure with a bidi-
rectional LSTM bottleneck. For the task of estimating the un-
derlying bit-sequence message, we also propose an extension
of the DEMUCS that directly estimates the bits. Evaluations
of the presented methods on the challenge test dataset yield
MSE and BER scores of —118.71 and —81, respectively, ac-
cording to the evaluation metrics defined in the challenge.

Index Terms— signal denoising, interference rejection,
single-channel source separation, deep learning, supervised
learning.

1. INTRODUCTION

Wireless communication links are susceptible to interference
from other electromagnetic sources, such as other wireless
communication devices, or non-communication devices e.g.
a microwave oven. In a wireless communication system, the
receiver is interested in estimating the bit-sequence message
that is transformed at the transmitter into an appropriate elec-
tromagnetic waveform, the signal-of-interest (SOI). As part
of a communication system design, a description (e.g., pulse
shape, modulation, timing, frequency, error coding) of this
transformation is available at the receiver, while information
about the structure of the interfering signals is usually not.
Estimating the message bits or SOI with the highest accu-
racy under such interference is an imperative part of a wire-
less communication system. Traditional radio frequency (RF)
signal separation (denoising) methods typically rely on prior
knowledge of the interfering signal model, the assumption of
non-overlapping time/frequency bands of the SOI and the in-
terfering signal, or the availability of multiple antennas. Un-
fortunately, these requirements are not met in many realistic
wireless communication scenarios, which this challenge ad-
dresses. A reasonable choice for problems with a lack of ac-
curate modeling and an abundance of data is to employ data-
driven solutions, specifically deep neural networks (DNN).
Denoising audio signals using DNNs has been a success-
ful and very productive practice in recent years, e.g. [1}[2],
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achieving state-of-the-art performance. DNNs have also been
used in other denoising tasks, such as that of seismic sig-
nals [3]] and gravitational waves [4]]. Recent work, e.g. [5],
has considered the application of DNNs originally designed
for audio signal denoising also to the RF signal denoising
task, and the current paper is another attempt where the ap-
plication of the DEMUCS architecture [|1,/6] is considered.
The task of this signal processing grand challenge is to es-
timate both the SOI waveform and its underlying bit-sequence
message from the given signal mixture y = s + b € C*0960,
where s is the SOI, and b is an interference signal, which is
a time-series segment from one of the frames of the EMISig-
nall, CommSignal2, CommSignal3, or CommSignal5G1
datasets provided by the organizers. Two different types of
SOI are considered. The first SOI is a single-carrier signal
with QPSK and Gray coding of uniformly distributed mes-
sage bits, and modulated by a root-raised cosine pulse shaping
function. The second SOl is an orthogonal frequency division
multiplexing (OFDM) signal—a multi-carrier signal that is
comprised of 64 (while 8 of them being inactive) orthogo-
nal subcarriers, each carrying a QPSK symbol. Note that,
for SOI 1 (QPSK) and SOI 2 (OFDMQPSK), the estimated
bit-sequence messages 2 involve 5120 bits, and 57344 bits
(40960/80 = 512 OFDM symbols x 56 active subcarriers x 2
bits per QPSK-symbol), respectively. For further details of
the SOIs and their mathematical descriptions we refer to [[7].

2. METHODOLOGY
2.1. Dataset

For training, we used a script provided by the organizers to
generate 240000 sample mixtures with different random tar-
get SINRs (between -33 dB and 3 dB) for the four interference
types. Test mixtures were provided for various target SINRs
from -30 dB to 0 dB in 3 dB increments, 100 cases per SINR.

2.2. DEMUCS for RF Signal Denoising and Bit Regression
DEMUCS [11|6] is an encoder/decoder architecture composed
of a convolutional encoder, a unidirectional or bidirectional
LSTM (we considered the latter) applied on the encoder’s
output, and a convolutional decoder, with the encoder and de-
coder linked with U-Net skip connections. It is characterized
by its number of layers L in encoder/decoder, initial number
of hidden channels H, layer kernel size K, stride S and re-
sampling factor U.


https://github.com/CagkanYapar/RFDemucs

- OFDMQPSK+CommSignal3 - WaveNet
OFDMQPSK+CommSignal3 - DEMUCS

- OFDMQPSK+CommSignal2 - WaveNet
OFDMQPSK+CommSignal2 - DEMUCS

- OFDMQPSK+CommSignal5G1 - WaveNet
OFDMQPSK+CommSignal5G1 - DEMUCS
OFDMQPSK+EMISignall - WaveNet
OFDMQPSK+EMISignall - DEMUCS
QPSK+CommSignal3 - WaveNet
QPSK+CommSignal3 - DEMUCS

- QPSK+CommsSignal2 - WaveNet
QPSK+CommSignal2 - DEMUCS
QPSK+CommSignal5G1 - WaveNet
QPSK+CommSignal5G1 - DEMUCS

-30 -20 -10 0

SINR [dB]

-30

Except for QPSK + CommSignal3, we set H = 64, S =
U = 2, and for the former we set H = 80 and S = U = 4.
For all scenarios, we set K = 8 and L = 5. Unlike [[1], we
did not normalize the input by its standard deviation, as it has
been our experience that this is detrimental to performance.

We also propose an extension of the DEMUCS for direct
bit regression by appending the DEMUCS architecture with
a fully connected layer that is applied to consecutive disjoint
blocks of an appropriately chosen number of output samples
(e.g., 64 for QPSK SOI) of DEMUCS and outputs the bits
(e.g., 8 bits for QPSK) during the inference phase after apply-
ing a “hard decision” on the threshold value of 0.5. This idea
of extending DEMUCS was inspired by the “Bit Regression”

baseline method from the Single-Channel RF Challenge.ﬂ
2.3. Training

For each combination of SOI and interference, we train a sep-
arate DEMUCS model. For SOI estimation and bit regression,
we use the MSE loss for training. We also considered train-
ing the bit regression DNN with cross entropy loss. For the
QPSK+CommSignal2 and QPSK+CommsSignal3 cases, we
used a learning rate of 3 - 10~%, otherwise 3 - 107°. We
used ReduceLROnPlateau scheduler with a patience of 3 and
EarlyStopping with a patience of 12 and Adam optimizer [9].
3. RESULTS
According to our results shown in Fig. [, DEMUCS closely
follows WaveNet in most scenarios, yielding an overall MSE
score of DEMUCS (WaveNet) -118.71 (-119.35) and a BER
score of DEMUCS (WaveNet) -81 (-78) in the challenge test
set (cf. [7] for the definitions/formulations of these scores.
The lower the better on both scores). Our results show that al-
most (except for QPSK + CommSignal5G1) in all considered
settings, the estimation of the SOI followed by the matched
filtering baseline method yields better BER performance than
the bit regression DEMUCS. Another observation is that for
bit regression, using the MSE loss instead of the cross-entropy
loss leads to higher accuracy, supporting the findings in [[10]].

Remark 1: Surprisingly, the common practice of early stop-
ping based on validation loss failed in the QPSK + Comm-

2https ://github.com/RFChallenge/rfchallenge_
singlechannel_starter
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Fig. 1: Comparison of the test MSE (Mean Squared Error) and BER (Bit Error Rate) accuracies of the baseline WaveNet [2, 8]
provided by the challenge organizers with those of the DEMUCS [1]] architecture we adopted. Left: MSE, Right: BER.
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Signal3 setting for the DEMUCS architecture, as the valida-
tion loss continued to decrease along with the training loss.
We note that the training/validation dataset generation script
provided by the challenge organizers is based on extracting
random frames from a “global” dataset, INTERFERENCE-
SET [|7], and thus the training and validation datasets are not
guaranteed to be disjoint, which may have played a role in the
overfitting in this exceptional case. To remedy the overfitting,
in this setting we used the TESTSET 1 EXAMPLE dataset for
validation, which is not part of the INTERFERENCESET.
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