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ABSTRACT

For a radio frequency (RF) signal separation task, we propose
two models operating directly on the time-domain waveform:
a Transformer U-Net, a convolution-attention based model
with an encoder-decoder architecture where self-attention
blocks are inserted in the bottleneck to refine its representa-
tions, and a finetuned discriminative WaveNet model. The
mixture of signal to separate is based on the ICASSP 2024
Signal Processing Grand Challenge on Data-Driven Signal
Separation in Radio Spectrum. Compared to the baseline
WaveNet architecture, we observed competitive performance
with the Transformer U-Net and performance gains when
finetuning the WaveNet model. The submissions achieved
the 2nd rank in BER score and 3rd rank in MSE score.

Index Terms— RF signal separation, machine learning,
transformers, self-attention, wireless communications

1. INTRODUCTION

The rapid expansion of wireless technologies has led to dif-
ferent communication systems sharing overlapping RF bands,
causing co-channel interference. The challenge is to sepa-
rate these mixed signals into their individual components, es-
pecially in situations where traditional separation like multi-
plexing and filtering are ineffective due to overlapping time
and frequency components of the signals. Recent advance-
ments in machine learning, particularly in computer vision
and audio, have inspired similar approaches for RF signal
separation, e.g. speech denoising [1] and speech generation
[2]. However, RF signals have unique characteristics, requir-
ing new neural network architectures for effective data-driven
signal separation.

In this work, we report our results for the ”ICASSP 2024
SP Grand Challenge: Data-Driven Signal Separation in Ra-
dio Spectrum”, where the objective is to separate a signal-of-
interest (SOI) from non-Gaussian, nonstationary co-channel
interference [3]. We propose an enhancement to the U-Net
architecture by placing self-attention mechanisms [4] on the
bottleneck to refine the latent representation. We also propose
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finetuning on the baseline WaveNet model [2] provided from
the challenge with a modified loss function and optimized it
using a very low learning rate.

2. MODELS AND ARCHITECTURES

WaveNet: The WaveNet architecture [2] is a convolutional
neural network based on a stack of dilated convolutional lay-
ers. This dilation enables the model to capture long range
temporal dependencies in the signal, rendering it highly effec-
tive for various signal processing applications, such as signal
separation. Each layer in the network has an increasing dila-
tion factor, allowing the network to have a very large recep-
tive field with fewer layers. Another component of WaveNet
is the gated activation units, which employ sigmoid and tanh
functions to control the information flow of the network, en-
abling it to model more complex representations of the signal.
Residual connections are incorporated in each layer to allevi-
ate the vanishing gradient problem and allow deeper network
architectures. To produce the final output, skip connections
are employed in each layer, which aggregates all the repre-
sentations in each layer and pass them further for additional
processing. For the RF signal separation problem, we pro-
pose to finetune the WaveNet model with a very low learning
rate, as this allows for more precise adjustments to the model
weights, capturing more subtle features without significantly
disrupting the already learned weights.

Transformer U-Net: We propose the Transformer U-Net
architecture, a convolutional U-Net augmented with self-
attention mechanisms that refine the bottleneck representa-
tions (see Fig. 1). The Transformer U-Net architecture blends
the strengths of the U-Net architecture with the self-attention
mechanism.

In the encoder, the input mixture signal is progressively
downsampled using convolution blocks. At the bottleneck,
multihead self-attention layers are introduced. These layers
enable to process long-range dependencies in the down-
sampled signal, refining the bottleneck representations by
focusing on relevant parts of the downsampled signal. Sub-
sequently, the decoder progressively upsamples the data back
into its original length. The features from the encoder are
integrated at the decoder through skip connections. This en-
sures that the spatial information lost during downsampling
is recovered, leading to more context-aware outputs.
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Fig. 1. Architecture of the Transformer U-Net (TSFM-U). The
depth of the encoder and decoder network is D = 8. Each layer
dimension grows twice with an initial hidden dimension of H = 96

and capped at Hmax = 1024 to limit the number of trainable param-
eters. Each layer has kernel size K = 3 and stride S = 2. The depth
of the bottleneck network is DB = 24. Each self-attention layer has
h = 16 parallel heads, a model dimension of dmodel = 1024, and
an inner dimension of dinner = 4096.

3. EXPERIMENTS AND RESULTS

Training and Evaluation: The detailed data generation pro-
cess of the mixture signal y = x+ n ∈ C40960 can be found
in [3]. For the TSFM-U network, in the first training stage,
we train the model for 50 epochs using the Adam optimizer
with the AMSGrad variant and with a constant learning rate
of 0.0002. The model directly predicts the SOI from the mix-
ture signal (i.e., signal separation by direct-regression) and
the loss function is set to be the MSE between the true and
predicted signal of interest. In the finetuning stage, we opti-
mize the best-performing models with a modified loss func-
tion and a very low learning rate (2× 10−6 or 2× 10−8). The
loss function for finetuning is given by

L = l1 + λl2,

where l1 is the MSE between the true and predicted signal of
interest, l1 = E

[
(x− x̂)2

]
, and l2 is set to be the MSE be-

tween the true bits and bits demodulated from the predicted
signal of interest, l2 = E

[
(b− b̂)2

]
, since the model does

not produce the bit probabilities, the cross entropy loss is un-
suitable in this case.

For the TSFM-U network, we select the best model on
the evaluation performance from the first training stage and
further finetune the convolution decoder network, i.e. convo-
lution encoder and transformer networks are frozen. For the
WaveNet, we start with the baseline weights provided from
the challenge and simply train them further using a very low
learning rate.

We train our models on 4× A100 GPUs. The evaluation
is done on a holdout set with 100 samples on 11 SINR lev-
els, ranging from -30dB to 0dB in steps of 3dB, where the
final MSE and BER scores defined for the challenge are cal-

culated.1 The code and more detailed results are made pub-
licly available.2

Results: Table 1 summarizes the results on the test example
mixtures (TestSet1Example) for the MSE and BER scores.

Model n1 n2 n3 n4

M
SE

Sc
or

e

x1
TSFM-U -26.73 -25.635 -4.08 -15.73

WaveNet-ft -33.31 -26.32 -4.61 -36.01

x2
TSFM-U -4.1 -5.90 -1.94 -10.09

WaveNet-ft -15.06 -6.56 -2.33 -10.92

B
E

R
Sc

or
e

x1
TSFM-U -24 -18 0 -9

WaveNet-ft -24 -18 0 -21

x2
TSFM-U +3 -6 +3 -6

WaveNet-ft -15 -6 +3 -9

Table 1. MSE and BER Scores. x1 and x2 denote the SOI for
single-carrier QPSK, respectively OFDM QPSK. For the interfer-
ence signals, we denote EMISignal1 as n1, CommSignal2 as n2,
CommSignal3 as n3, and CommSignal5G1 as n4. Detailed compar-
ison figures of our result (Team: OneInAMillion) on the final test
mixtures can be found in [3], for which the chosen models produc-
ing the submission results are underlined. We selected the TSFM-U
if there are no significant gains obtainable from the WaveNet.

4. CONCLUSIONS

We demonstrated the effectiveness of self-attention in the U-
Net architecture to refine the bottleneck representation, en-
abling easier signal separation for the decoder and achieving
competitive performance. Furthermore, we demonstrate im-
provements in performance of the WaveNet model by fine-
tuning using low learning rates, in particular for the mixture
of QPSK signal and a CommSignal5G1 interference signal,
suggesting the importance of hyperparameter selection, such
as the learning rate.
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