

RFChallenge:

Collision of the Drones: A Challenge in Multi-Sensor Signal Separation

Guide for Challenge Participants

Research was sponsored by the United States Air Force Research Laboratory and the United
States Air Force Artificial Intelligence Accelerator and was accomplished under Cooperative
Agreement Number FA8750-19-2-1000. The views and conclusions contained in this document
are those of the authors and should not be interpreted as representing the official policies,
either expressed or implied, of the United States Air Force or the U.S. Government. The U.S.
Government is authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation herein.

I. Overview

In the single-channel portion of RFChallenge, the task is to design an algorithm which learns and
exploits the waveform structure in co-channel RF signals to separate them. When available,
multi-channel measurements offer additional leverage for signal separation in the form of low-
dimensional spatial structure. Namely manmade interference typically arises from point RF
emitters, and point emitters are intrinsically low-dimensional when observed by an antenna
array with a sufficient number of elements1. In this part of the Challenge, the ISM2-band
downlink of an unmanned aerial vehicle (UAV) is buried in co-channel interference from another
UAV at a distinct direction-of-arrival. The task in this part of the Challenge is to exploit the
structure in multi-channel measurements of the mixture of the two UAV waveforms to extract
the downlink signal from its interference. The lack of prior information on either the individual
waveforms, or their respective array responses at the receiver, makes unsupervised machine
learning an intriguing framework for solving this blind source separation problem.

Figure 1: Problem Overview

1 The M-dimensional measurements captured by an M-element antenna array can be represented as linear
combinations of N < M array responses associated with the directions at which each of the N point emitter signals
arrives at the array
2 Industrial, Scientific, and Medical (ISM) Band

II. Description of the Dataset

2.1 Parameter Description

The Dataset for this problem consists of multi-channel observations of the mixture of two RF
signals emitted by the two drones in our scenario:

 A synthetic and noiseless QPSK-modulated signal 𝒛𝑺𝑶𝑰 emitted by an emulated drone
which serves as the signal-of-interest (SOI), and

 A recorded and noisy communication waveform 𝒛𝑰𝒏𝒕𝒆𝒓𝒇𝒆𝒓𝒆𝒓 transmitted over-the-air by
a commercially-available drone which serves as the co-channel interference. The
bandwidth of 𝒛𝑰𝒏𝒕𝒆𝒓𝒇𝒆𝒓𝒆𝒓 is approximately the same as 𝒛𝑺𝑶𝑰.

Each file consists of a single frame of the SOI combined linearly with the interference, i.e.

𝒁𝒎𝒊𝒙𝒕𝒖𝒓𝒆 = 𝒁𝑺𝑶𝑰 + 𝛼 𝒁𝑰𝒏𝒕𝒆𝒓𝒇𝒆𝒓𝒆𝒓 (1)

where 𝛼 is a scalar coefficient that controls the strength of the interference relative to the SOI.
The coefficient 𝛼 is chosen from a set of 25 possible values selected to produce signal-to-
interference-plus-noise (SINR) ratios ranging from -18 to +12 dB. The value of 𝛼 in effect for a
given file in the multisensory Dataset is identified by its positive-integer-valued alphaIndex.

The properties of the SOI are listed in Table I below. These parameters are provided for
informational purposes only. Please note: Your methodology should not rely upon knowledge of
these specific SOI parameters; rather they should be designed to protect a wide range of
structured RF signals beyond this specific SOI.

Table 1: Parameters for SOI

Parameter Value
Forward Error Correction Bose-Chaudhuri-Hocquenghem (BCH) (c.f. [1])

Message Bits per Codeword = 24
Codeword Bits per Codeword = 63

Frame Length (Codewords) Variable number of Codewords
frameLen = { 4, 6, 8, 10, 12, 16, 32, 64, 128}

Symbol Modulation QPSK
Samples per symbol 2
Pulse Shaping Filter Root-raised-cosine with rolloff factor 0.25

Truncated to 12 symbols
Preamble (QPSK) symbols for
channel estimation (not
included in frame length)

50

2.2 Filename Convention for Input

Each file is named according to its alphaIndex, setIndex, and frame length frameLen (see Table 1
above), and frame number, using the following convention:

input_frameLen_[frameLen]_setIndex_[setIndex]_alphaIndex_[alphaIndex]_frame_[frameIndex].iqdata

2.3 Dataset Partitioning and Format

The full Dataset is partitioned into sets of files. Each set is associated with a distinct frameLen,
and consists of 100 distinct frame mixtures for each value of alphaIndex. There are 20 sets
provided for each value of frameLen. You may use any one of these sets to obtain a coarse-level
validation and/or performance assessment of their separation algorithm.

Each set is stored as a .zip file with a name of the form:

rfChallenge_multisensor_frameLen_[frameLen]_setIndex_[setIndex].zip

Each individual file within a set, representing a single mixture frame as described above, stores
mixture baseband (complex) samples in binary format with 32-bit-float samples from the four
channels stored serially and in-phase I (i.e. real) and quadrature Q (i.e. imaginary) components
interleaved for each channel. In-phase and quadrature float samples are stored using IEEE
lower-endian bit ordering. Reference code written in GNU Octave which loads 𝒁𝒎𝒊𝒙𝒕𝒖𝒓𝒆 from
this file format is provided in the function readData_oct.m is provided in the sourceCode
subdirectory of the repo3.

III. Problem Description

Expanding the terms in Equation (1), the NSAMP samples of a given mixture frame 𝒁𝒎𝒊𝒙𝒕𝒖𝒓𝒆
captured by the NR-channel receiver can be modeled as:

𝒁𝒎𝒊𝒙𝒕𝒖𝒓𝒆 = 𝒉ௌைூ𝒔 + 𝒉ூ௧𝒃 + 𝒏 (2)

 Where:

 𝒁𝒎𝒊𝒙𝒕𝒖𝒓𝒆 is an NR x NSAMP data matrix containing the received mixture of the SOI and
Interferer signals

 𝒔 is a 1 x NSAMP vector containing the SOI transmitted signal
 𝒃 is a 1 x NSAMP vector containing the Interferer transmitted signal
 𝒉ௌைூ and 𝒉ூ௧ are the NR x 1 array responses associated with SOI and

Interferer, respectively
 𝒏 is the NR x NSAMP vector of receiver noise in the recording of the Interferer

The challenge posed to you is to develop an algorithm which recovers 𝒔ො, an estimate of
𝒔 for a given frame using only the observed mixture data 𝒁𝒎𝒊𝒙𝒕𝒖𝒓𝒆 for that single frame. Please
note that separation approaches which train on multiple frames to recover single-frame
estimates are not of interest in this part of RFChallenge.

3 Repo URL: https://github.com/RFChallenge/rfchallenge_multichannel_starter

 This Problem falls into the general category of Blind Source Separation.

IV. Getting Started with Multi-Sensor RFChallenge

The instructions below provide setup instructions for evaluating performance of the
baseline signal separation method described in Section VI. With a few additional steps
described at the end of this Section, these instructions can be extended to perform the
same evaluation on your own signal separation algorithm.

4.1. Download and install the free open-source scientific computing package GNU Octave4 if not

already installed on your computing machine of choice

4.2. Download RFChallenge Multi-Sensor Dataset available on the MIT-hosted RFChallenge
website

4.3. Clone RFChallenge Multi-sensor GitHub repo located at the following URL:
https://github.com/RFChallenge/rfchallenge_multichannel_starter
Source code for this part of RFChallenge is located in the repo sub-directory sourceCode

4.4. Unzip the .zip file(s) within the downloaded Dataset corresponding to the (frameLen,
setIndex) pair(s) on which you want to evaluate separation algorithm performance to a
directory of your choosing

4.4.1. Note 1: It is recommended that you test the evaluation process initially with a
single .zip file

4.4.2. Note 2: By default, main script expects the directory to be repo sub-directory
mixtureData

4.5. Specify this directory as a string in the variable inputDirectory at the top of main script

evalMain.m

4.6. Create a directory for storing the output of the signal separation algorithm

4.6.1. Note: By default, main script will store signal separator output in repo sub-
directory sepOutput

4.7. Specify this directory in the variable outputDirectory at the top of main script evalMain.m

4.8. Unzip the .zip file in the repo soiParamFiles.zip. These files, which contain SOI parameters

necessary for performance evaluation, should be unzipped to a subdirectory with the name
soiParamFiles.

4.9. Start GNU Octave

4 GNUOctave is open-source software and available for download at https://www.gnu.org/software/octave/index

4.10. Install the communications package by entering the following in the GNUOctave

Command Window: pkg load communications

4.11. Find and run the GNU Octave script evalMain.m In the repo sourceCode sub-directory.

At this point you should see status printouts in the Octave command window showing the
succession of files that are being loaded for processing. For each frame length that is
processed, a plot will show the fraction of successfully decoded frames as a function of
SINR.

When you have implemented your signal separation algorithm in a programming
language of your choice and wish to evaluate its performance, you can do so by
following these additional steps:

4.12 Implement interface in your code for reading mixture data from the Dataset files

(see Section V for details)
4.13 Implement interface in your code for writing separated signals to files adhering

to the naming conventions and file formats described in Section V, so that the
quality of the separated output can be evaluated by the GNUOctave script evalMain

4.14 Run your signal separation code to generate signal separation output for
evaluation

4.15 Comment out the call to the reference algorithm sigSeparator in evalMain
4.16 Run evalMain

4.16.1 Note: Section 5.4 describes how performance is scored

V. Performance Evaluation of Participant Code

5.1 Evaluation Description

Performance evaluation will quantify over the full Dataset the frame error rate of the
SOI estimates 𝒔ො provided by your signal separation code at the receiver. Evaluation
code written in GNUOctave is provided for the same in the RFChallenge Git repository
(see Section 4). Your signal separation code should produce output adhering to the
conventions and formatting followed by the Evaluation code, and you should not modify
the Evaluation code, except where indicated by comments.

The Evaluation code evaluates the quality of separated signals by executing the
following data and signal processing steps in order for each of the frames in a given
output file:

1. Basic error-checking on the input

2. Matched filtering on the signal-of-interest (using the root-raised-cosine filter
parameters in Table I)

3. Channel estimation using the preamble symbols (c.f. Table I)
4. Equalization using the channel estimates from step 3
5. Demodulation of payload symbols using standard QPSK demodulator
6. Decoding of demodulated symbols using BCH decoder (c.f. Table I for

parameters)
7. Comparison of decoded bits with true bits for this frame

Steps 1-7 are repeated for each frame in the file and an overall frameSuccessRate is
computed as the fraction of frames with zero bit errors. This frameSuccessRate metric
is the base evaluation parameter on which all Participant solutions will be evaluated
(see Section 5.3 “Scoring” for details).

To successfully run the Evaluation code on the output of your signal separation
algorithm, you will need to write estimates of the individual signal components in the
mixture to file. Please note: For evaluation to be successful, the estimated components
written to file should have the same length (in number of samples) as their input
mixture data.

Since Blind Signal Separation methods are by definition not able to associate the
components they separate with a particular SOI5, Your code is not required to identify
which of the separated components they produce is the SOI. Instead, your code is
required to output each separated components to its own file and the provided
Evaluation code will check the number of SOI bit errors in each component. If there are
zero bit errors in either of the two separated component frames, then decoding is
declared a success.

Specifically for each input file associated with a distinct (frameLen, setIndex, alphaIndex,
frameIndex) tuple as described in Section II, your signal separation code should produce
a corresponding single-channel output file in the same binary format as the input, for
each of the two separated components. Reference code written in GNUOctave for
writing this single-channel output file is provided in in the function writeData_oct.m is
provided in the sourceCode subdirectory of the repo. Note: as the input to this function is
single-channel, the data passed to this function to be written to file should be a row vector.

5.2 Filename Convention for Output (Separated Signal Frames)

The filename for the two outputs matches the input filename described in 2.2, except
with “outputA” or “outputB” replacing “input” at the beginning of the name for the first

5 This is the so-called permutation ambiguity common to blind signal separation algorithms

and second separated signal components, respectively. Namely to be evaluated by
evalMain script, your code needs to produce the following two output files for tuple
(frameLen, setIndex, alphaIndex, frameIndex):

For the first separated component, the filename should be:

outputA_frameLen_[frameLen]_setIndex_[setIndex]_alphaIndex_[alphaIndex]_frame_[frameIndex].iqdata

For the second separated component, the filename should be:

outputB_frameLen_[frameLen]_setIndex_[setIndex]_alphaIndex_[alphaIndex]_frame_[frameIndex].iqdata

5.3 Running Evaluation Code on Separated Signal Frames

The GNUOctave script evalMain.m evaluates the performance of submitted separation
algorithms over the full Dataset representing all values of the tuple (frameLen, setIndex,
alphaIndex, frameIndex). To evaluate the frame error rate on any individual tuple value,
this script calls helper function evaluateSeparation.m, which takes in the value of the
tuple as a comma-separated list and the number of separated signals to process (2), and
outputs the fraction of decoded frames with zero bit errors frameSuccessRate, and (for
purely informational purposes) the bit error rate ber. This function, whose prototype is
below, can also be used to spot-check performance on a given set of parameters.

function [frameSuccessRate, ber] = evaluateSeparation(alphaIndex,
frameLen, setIndex, nSources)

5.4 Scoring

The final Score used to determine your place on the Multi-Sensor Leaderboard is the
minimum value of SINR (over the SINRs instantiated by each alphaIndex) at which a
frame error rate of less than 10% is achieved. An independent Score is computed for
each frame length frameLen, and you may place on the Leaderboard for one or more
individual values frameLen. Smaller scores indicate better separation performance. As
exemplified in Figure 3 for the baseline algorithm, lower values of frameLen allow the
limited levels of sample support that generally challenge unsupervised learning methods
(including blind source separation methods). The hope is that you will provide a method
which yields stronger interference rejection even at the low-to-moderate frame lengths.

5.5 Submitting your Solution

If you wish to be included on the Multi-Sensor Leaderboard on the RFChallenge website,
please submit a short summary of the multi-sensor signal separation algorithm they

used. The organizers will use this summary to verify that the algorithm is within the
guidelines set forth in Section II and III, before including results in the Multi-Sensor
RFChallenge Leaderboard. The summary must clearly indicate the minimum-SINR Score
reported by running evalMain for each attempted frame length (i.e. value of frameLen),
over all sets (i.e. all 20 values of setIndex) and all interference strengths (i.e. all 25 values
of alphaIndex).

VI. Baseline Method: Independent Components Analysis

6.1 Algorithm Description

To provide a performance benchmark for Participant methods, we have selected a well-
established blind source separation method known as complex-valued FastICA (c.f. [2],
[3]) as a baseline method for this part of RFChallenge. Applying this method to our
problem entails writing the signal mixtures and their components as random variables,
yielding a statistical model for the samples of the mixture written in terms of the (scalar)
samples of SOI 𝑠 and interferer 𝑏 respectively, as follows:

𝒛𝒎𝒊𝒙𝒕𝒖𝒓𝒆 = 𝑯 ቂ
𝑠
𝑏

ቃ (3)

where the matrix 𝑯 is given by:

𝑯 = [𝒉𝑆𝑂𝐼 𝒉𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑒𝑟] (4)

Given the model above, the random vector 𝒙ෝ containing the separated signal
components are given by:

𝒙ෝ = ቂ
�̂�
𝑏

ቃ = 𝑾𝑯𝒛𝒎𝒊𝒙𝒕𝒖𝒓𝒆 (5)

The “unmixing” matrix 𝑾 has number of columns equal to the number of receive
antennas NR and the number of rows equal to the number of independent signals
nSignals (in this case 2). Note that in this context the matrix 𝑾 is in fact a beamforming
matrix with each column 𝒘𝒋 providing the beamforming weights associated with a given
signal component. It is recovered in FastICA by solving the following optimization
problem [2]:

maximize ∑ 𝐽ீ(𝒘𝒋

ୀଵ) with respect to {𝒘𝒋}, j = 1,…, nSignals (6)

under the constraint:

𝐸൛൫𝑤

ு𝑥൯൫𝑤
ு𝑥൯

∗
ൟ = 𝛿

Where 𝛿 = 1 for j = k, and 𝛿 = 0 otherwise

The solution of this optimization problem provided in [2] is an iterative algorithm which
solves for the beamforming weight vector 𝒘𝒋 associated with each signal (or
independent component) sequentially. While for brevity we omit the details of this
iterative update here, the algorithm is implemented in the file complexFastICA.m in the
sourceCode sub-directory of the Multi-Sensor RFChallenge Git repository described in
Section IV.

In the remainder of this section we describe the objective (or “contrast”) function and
constraint in (6), and ambiguities involved in this optimization.

6.1.1 Contrast Function and Constraint

The objective or “contrast” function 𝐽(.) is of the form:

𝐽 (𝒘) = 𝑬{𝑮(|𝒘𝑯𝒙|𝟐)} (7)

and is typically a metric that quantifies non-Gaussianity (e.g. kurtosis) so that the
optimization (6) is designed to produce outputs which are highly non-Gaussian. The
function 𝑮(𝒚) is a smooth even function. If one chooses (𝑦) = 𝑦ଶ , then from (6) our
contrast function becomes:

𝐽 (𝒘) = 𝑬{|𝒘𝑯𝒙|𝟒} (8)

which is basically a measure of the kurtosis of 𝒘𝑯𝒙.

In practice kurtosis-based contrast functions can be sensitive to outliers in the data.
Hence in practice more robust functions which increase more gradually with their
argument are chosen for 𝑮. For our baseline implementation, we choose:

𝑮(𝒚) = 𝒍𝒐𝒈(𝒄 + 𝒚) (9)

where 𝒄 is a small constant (𝒄 = 𝟎. 𝟏 was chosen for our implementation). Interested
Participants are referred to references [2] and [3] for further detail on theory-driven
choice of contrast functions for maximizing non-Gaussianity.

Given that combining independent non-Gaussian signals tends to increase Gaussianity
relative to that of the individual components, the optimization in (6) will typically favor
beamforming weights 𝒘𝑺𝑶𝑰 which null out the interferer contributions in estimating the

SOI signal s. Underlying this qualitative argument is the assumption that the individual
components themselves are non-Gaussian, as most man-made RF signals are.

The role of the decorrelation constraint 𝐸൛(𝑤
ு𝑥)൫𝑤

ு𝑥൯
∗
ൟ = 𝛿 is to enforce that the

procedure finds distinct independent signal components, as opposed to producing
repeated beamforming weights which select the same component.

6.1.2 Ambiguities

Like most blind source separation methods, this method solves for the independent
signal components in a mixture up to permutation and scaling ambiguities. Namely the
target solution of optimization (6), i.e. the separated components vector 𝒙௧௧,
satisfies:

𝒙௧௧ = 𝑷𝑫 ቂ
𝑠
𝑏

ቃ (10)

where 𝑷 is a permutation matrix taking values in {0, 1}, and 𝑫 is a diagonal scaling
matrix whose diagonal elements are arbitrary complex scalars.

6.2 Performance Evaluation on Dataset

The FastICA algorithm described in Section 6.1 was applied on a frame-by-frame basis to
obtain a beamforming weight matrix 𝑾 for each frame. The NSAMP samples of the
separated signal components {𝒔ො , 𝒃𝒌} in the k-th frame were then obtained by applying
the beamforming matrix 𝑾𝒌 to the NR x NSAMP data matrix 𝒁𝒎𝒊𝒙𝒕𝒖𝒓𝒆 (described in Section
III) of the k-th frame as follows:

𝒔ො

𝒃𝒌
൨ = 𝑾𝒌

𝑯𝒁𝒎𝒊𝒙𝒕𝒖𝒓𝒆(𝒌)

Due to the permutation ambiguity described in Section 6.1.2, both outputs were
presented to the Evaluation algorithm as distinct files prefixed with “outputA” and
“outputB” respectively (see Section 5.1 and 5.2), for every frame in the Dataset.

6.3 Results

The results for a particular frame length (frameLen = 32 words) are shown in Figure 2.

Figure 2: FastICA performance for 32-word frame length across full Dataset

The minimum SINR required to achieve a frame success rate of 90% (i.e. the scoring
function described in Section 5.4) is plotted in Figure 3 as a function of frame length in
codewords (bottom x-axis) and symbols (top x-axis). For comparison, decoding a single
channel of the mixture frames with no interference mitigation requires an SINR of ~5 dB
for a frame success rate of 90%. As a benchmark for performance, we also assessed the
performance of an MMSE estimator with oracle knowledge of the array responses of the
SOI 𝒉ௌைூ as well as the interference-plus-noise spatial covariance matrix 𝑹. The MMSE
beamformer for the SOI is then constructed as (c.f. [4]):

𝒘𝑺𝑶𝑰 = 𝑹𝑛𝑖
ି𝟏𝒉𝑆𝑂𝐼

This oracle MMSE beamformer provided 90% frame success rate at SINRs above -9 dB,
as shown in Figure 3.

Figure 3: FastICA Achieved Score as a function of frameLen

VII. References

[1] B. Sklar. Digital Communications: Fundamentals and Applications, 2nd Edition, Upper
Saddle River: Prentice Hall PTR, 2000, pp. 370-374

[2] E. Bingham and A. Hyvarinen. A fast fixed-point algorithm for independent
component analysis of complex-valued signals. Int. J. of Neural Systems, 10(1):1-8,2000

[3] A. Hyvarinen, J. Karhunen, E. Oja. Independent Component Analysis. New York: John
Wiley & Sons, 2001.

[4] D. Tse and P. Viswanath. Fundamentals of Wireless Communication. New York:
Cambridge University Press, 2005.

