
 
Cyber-RF Anomaly Detector Challenge 

 
Wireless networks provide mission-critical infrastructure for public safety, national security, and military 
communications. The value of wireless networks in these applications is derived from their accessibility 
and availability. However, this accessibility is increasingly threatened by cyber-attacks such as jamming 
and spoofing.  
 
The challenge we identified for this research problem is with respect to the classification and detection of 
anomalous co-channel signals at the physical layer using both the IQ and network traffic data. We called 
this challenge the Cyber-RF Anomaly Detector. As a starting point, for this challenge our initial focus is 
Zigbee. Zigbee was chosen for its low data rate, low power consumption, and low-cost wireless network 
protocol that is commonly used for industrial control systems and IoT devices (e.g., Amazon Echo Plus and 
Samsung SmartThings).  
 
For the Cyber-RF Anomaly Detector challenge, the participants will be tasked with developing machine 
learning algorithms for the detection of anomalous Zigbee transmissions. The anomalous Zigbee 
transmissions were represented by simulating a replay attack and a rogue transmitter use case. The replay 
attack is when a malicious actor listens to the transmitter and duplicates the transmissions that are 
eventually sent to the coordinator (i.e., the malicious actor acts as a repeater). While for the rogue 
transmitter use case, a malicious actor is creating and transmitting new packets that are sent to the 
coordinator (i.e., the malicious actor acts as an independent transmitter). To evaluate the performance 
of the machine learning algorithms, several metrics can be computed from the following confusion matrix: 
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where TN, FN, FP, and TP refer to the numbers of true negatives, false negatives, false positives, and true 
positives, respectively. At the moment for this challenge, we are interested in computing the following 
performance metrics that assess different aspects of the classification: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁) 
 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) 
 

𝐹𝑃𝑅 = 𝐹𝑃/(𝐹𝑃 + 𝑇𝑁) 



 
 
The provided dataset for the Cyber-RF Anomaly Detector challenge consists of features extracted from 
both legitimate Zigbee and anomalous Zigbee transmissions. The Zigbee data was collected from our 
Software-Defined Radio (SDR)-based signals testbed whose goal is to create a complex RF environment 
for signal classification and anomaly detection. The SDR-based testbed consists of multiple SDRs (i.e., two 
Ettus X310s and one B210) as shown in Figure 1. For the legitimate Zigbee transmissions, we have one 
B210 serving as a coordinator and one X310 serving as the transmitter. In the case of the anomalous 
Zigbee transmissions, it is the same as the legitimate setup, but with an additional transmitter (an X310) 
who serves as the malicious actor.  
 

 
Figure 1: Wiring setup for the SDR-based signal testbed 

Each SDR is transmitting or receiving a signal using the Zigbee protocol. This Zigbee signal (i.e., either 
legitimate or anomalous) is sent to the receiver. The receiver is running a GNURadio implementation that 
records both the IQ data and network traffic data from the Zigbee signal. The IQ data was saved as a .dat 
file while the network traffic data was stored as a .pcap file. The anomalous Zigbee transmissions were 
represented by simulating a replay attack and a rogue transmitter use case. As seen in Figure 1, the 
coupler samples the transmitter’s transmission to pass to the malicious actor. In the case of the replay 
attack, the malicious actor will retransmit the signal passed to it by this coupler connection. In our setup, 
the splitter acts as a combiner (i.e., it adds the two signals from the transmitter and malicious actor 
together). 
 
To be certain that commonly used approaches such as an energy detector cannot be used to discern 
anomalous Zigbee transmissions from legitimate Zigbee transmissions, we are ensuring power balance 
while collecting the anomalous Zigbee data. The power balance was established by tuning several 
parameters from the malicious actor transmitter, such as TX, RX gain values, and the period of the 
message that is been sent. By first establishing the baseline maximum and mean power levels for 
legitimate captures done at different center frequencies, we manually tuned the gain and period values 
so that all anomalous captures would result in roughly the same number of packets, as well as would 
approximately match either the maximum or the mean of its legitimate counterpart. Later, an assessment 



was done to check that the attained signal power reflects the signal power from a legitimate Zigbee 
transmission.  
 
Besides the power balance, for the rogue transmitter use case, we also tweak the proportion of packets 
that the malicious actor sends to the coordinator. Specifically, several combinations of malicious vs. 
legitimate packet proportions were explored (i.e., 50/50, 60/40, 70/30, 80/20). In the case of the replay 
attack, tweaking the packet proportion is not applicable because here the malicious actor does not act as 
an independent transmitter. 
 
After the data collection and curation, the participants will be given a dataset containing features 
extracted from IQ and network traffic data using legitimate and anomalous Zigbee transmissions. Each of 
the legitimate and anomalous Zigbee transmissions was recorded for a duration of two minutes and 
different parameters were considered. For example, different values were used for the center frequency 
(i.e., 2.47, 2.48, and 2.49 GHz, respectively) and the Tx gain (i.e., 20, 25, and 30, respectively). A total of 
450 captures were collected for both the legitimate Zigbee, and anomalous Zigbee transmissions.  
 
For the IQ data, specific measurements were computed (i.e., Amplitude, Phase, RMS, Signal Power, FFT, 
and Periodogram). Later, features were extracted from these measurements. Some examples of the 
extracted IQ-based features are the skewness, Kurtosis, and entropy of these measurements. A list of the 
extracted IQ-based features is given in Table 1. 
 

Table 1:  IQ-based features extracted for each legitimate and anomalous Zigbee captures 

Features Description 
Amp_min Minimum amplitude measurement 
Amp_max Largest amplitude measurement 
Amp_var Variance of the amplitude measurement 
Amp_skew Skewness of the amplitude measurement 
Amp_rango Range of the amplitude measurement 
Amp_Kurtosis Kurtosis of the amplitude measurement 
Amp_entropy Entropy of the amplitude measurement 
Phase_min Minimum phase measurement 
Phase_var Variance of the phase measurement 
Phase_skew Skewness of the phase measurement 
Phase_entropy Entropy of the phase measurement 
RMS_max Largest RMS measurement 
RMS_skew Skewness of the RMS measurement 
RMS_rango Range of the RMS measurement 
RMS_Kurtosis Kurtosis of the RMS measurement 
RMS_entropy Entropy of the RMS measurement 
SP_min Minimum signal power measurement 



SP_max Largest signal power measurement 
SP_var Variance of the signal power measurement 
SP_skew Skewness of the signal power measurement 
SP_rango Range of the signal power measurement 
SP_Kurtosis Kurtosis of the signal power measurement 
SP_entropy Entropy of the signal power measurement 
SP_stError Standard error of the signal power measurement 
FFT_min Minimum FFT measurement 
FFT_max Largest FFT measurement 
FFT_avg Average of the FFT measurement 
FFT_median Median of the FFT measurement 
FFT_var Variance of the FFT measurement 
FFT_skew Skewness of the FFT measurement 
FFT_rango Range of the FFT measurement 
FFT_Kurtosis Kurtosis of the FFT measurement 
FFT_entropy Entropy of the FFT measurement 
FFT_stError Standard error of the FFT measurement 
Pd_max Largest periodogram measurement 
Pd_avg Average of the periodogram measurement 
Pd_var Variance of the periodogram measurement 
Pd_skew Skewness of the periodogram measurement 
Pd_rango Range of the periodogram measurement 
Pd_Kurtosis Kurtosis of the periodogram measurement 
Pd_entropy Entropy of the periodogram measurement 

 
With respect to the network traffic data, the .pcap files were fed to a tool called Tranalyzer (a lightweight 
unidirectional flow exporter that collects packet information with common characteristics) to obtain 
network flows. Later, these network flows served as the input into a Python script to extract network 
traffic-based features such as the number of flows, the average of the number of bytes sent, and the 
average of the packet size. The extracted network traffic-based features are listed in Table 2. 
 

Table 2: Network flows-based features extracted for each legitimate and anomalous Zigbee captures 

Features Description 
Duration_Avg Average time the communication lasted 

SumNoPktsSent Summation of the # of transmitted packets sent by all the network 
flows extracted from a pcap file 

numPktSent_avg Average of the # of transmitted packets sent by all the network 
flows extracted from a pcap file 

NoBytesSnt_avg Average of the # of bytes sent by all the network flows extracted 
from a pcap file 

minPktSize_min Minimum layer 3 packet size 



maxPktSize_max Largest layer 3 packet size 
avgPktSz_avg Average packet load ratio 
pktps_avg Average of the packets sent per second 
bytps_avg Average of bytes sent per second 
maxIAT_max Maximum of inter-arrival-time (IAT) of the flow 
avgIAT_avg Average of IAT of the flow 

 


